Improving Risk Assessments By Measuring Hydrocarbon Availability:

The Lampblack Experience

Hans Stroo
The RETEC Group, Inc.

September 29-30 Berkeley, CA

Lampblack: A Matrix That Strongly Binds PAHs

- Lampblack: Soot produced by oil combustion
- Large volumes of lampblack at CA MGP sites
- Lampblack can be over 80% Carbon
- Composed of "hard" (aromatic) Carbon (very little polar or alkane hydrocarbons)
- Has sorption characteristics similar to GAC
- Previous studies showed PAHs in lampblack (Santa Barbara sample) were not leachable and were not available for biological uptake

Lampblack

- SEM picture showing spongy nature of lampblack
- Sorption capacity and binding energy similar to soot

400 x Sample CA-5

8 Lampblack Samples Tested, Representing Range of Compositions and Concentrations

CA Risk Evaluation

```
Risk_{soil} = SFo \times Cs \times [(IR_s \times EF \times ED \times 10^{-6} \\ kg/mg)/(BW \times AT \times 365 \text{ days/yr})]_{child \text{ and adult}} 
+ SFo \times Cs \times [(SA \times AF \times ABS \times ED \times 10^{-6} \\ kg/mg)/(BW \times AT \times 365 \text{ days/yr})]_{child \text{ and adult}} 
Dermal Risk
```

- Bioavailability Factors Assumed
 - Oral bioavailability: 1 for any chemical
 - Dermal bioavailability (ABS): 0.15 for PAHs
- Objectives
 - Derive more realistic bioavailability values
 - Develop protocols to measure bioavailability of PAHs in lampblack

Measured Equilibrium Concentrations May Be Less Than 0.1 ppb

Monolayer coverage assuming pyrene to be the average PAH molecule is 16,500 mg/kg carbon

0

Less Than 20% of the B[a]P is Released in Over 4 Months of Water Extraction

UPTAKE OF NATIVE PAHS AND DEUTERATED SPIKED PAHS

PAH	% Uptake By Worms		% Relative
	Native	Spiked	Bioavail'y
Naphthalene	0.01	0.04	25
Fluorene	0.02	0.08	26
Anthracene	0.01	0.23	6
Pyrene	0.06	0.98	6
Benzo[a]Anth.	0.06	1.39	5
Benzo[a]Pyrene	0.06	0.82	7

The % of B[a]P Absorbed by Skin Is 14-100x Less than CA Default

The % of B[a]P Absorbed in Simulated GI Tract Studies is Less Than 5%

The % of Phenanthrene Absorbed by Mice Is Less Than 1%

In Vivo and In Vitro Uptake of Phenanthrene (Phen) and Benzo(a)Pyrene (BaP)

*In Vitro Uptake of Phen in 4 In Vivo Samples = 7.6%

CORRELATIONS OF IN VITRO UPTAKE TO TOTAL AND SFE-DERIVED AVAILABLE CONCENTRATIONS

PAH COMPOUND	R ² VALUES		
	AVAILABLE	TOTAL	
NAPHTHALENE	0.939	0.866	
ACENAPHTHENE	0.939	0.354	
FLUORENE	0.984	0.747	
PHENANTHRENE	0.647	0.434	
ANTHRACENE	0.870	0.529	
FLUORANTHENE	0.728	0.678	
PYRENE	0.760	0.707	
BENZ[A]ANTHRACENE	0.786	0.435	
CHRYSENE	0.900	0.626	
BENZO[B,K]FLUOR	0.986	0.454	
BENZO[A]PYRENE	0.924	0.629	
DIBENZ[A,H]ANTHRACENE	0.680	0.007	
BENZO[G,H,I]PERYLENE	0.884	0.442	
INDENO[1,2,3-CD]PYRENE	0.883	0.348	

Site-Specific Risk Based Criteria

Sample	Risk Based Level (mg BaP equiv./kg)	Increase
CA2	5.1	142
CA5	1.6	44
CA10	3.0	83
CA13	1.8	50
CA14	0.83	23
CA17	4.7	131
CA18	0.92	26
Mean	2.6	72
Default	0.036	-

CONCLUSIONS

- Dermal uptake of B[a]P from lampblack is 1% or less, compared to the default assumption of 15%
- Simulated GI tract uptake of B[a]P from lampblack is 5% or less (default assumption is 100%)
- Worm uptake of PAHs from lampblack is far less than predictions based on the standard method
- Proposed protocol yields risk-based cleanup levels for CPAH in lampblack of 0.8 to 5 mg/kg, 23 to 142 times higher than default criteria
- SFE or ROR can be used to predict cleanup criteria based on bioassays

RECOMMENDATIONS

- Matrix-Specific Default Criteria for Lampblack
 - 10x Lower Availability than Assumed
- Protocols for Site-Specific Evaluations
 - Supercritical Fluid Extraction,

And Possibly One or More Tests:

- In Vitro Simulated GI Tract Extractions
- In Vitro Dermal Uptake Tests
- Improved Leachability Assays

Proposed Modifications to Current California (DTSC) PAH Cleanup Levels

rmal Absorption Factor (DAF): 24-Hour Dermal Uptake

Roy Protocol

gestion Absorption Factor (IAF): Based on *In Vitro* Uptake

Holman Protocol

latilization / Inhalation: No adjustment

Lessons Learned

- Time can be reduced if phased approach is not used in the future
- Oral bioavailability methods require more work and validation
- One to two order of magnitude increases in CPAH risk-based criteria are possible
- Bioassays remain time-consuming, costly, and difficult to interpret

Data Gaps

- In Vitro / In Vivo Oral Uptake
 - Partial metabolism caused poor mass balance
 - Baseline oral bioavailability is critical parameter
- Measurement / Analysis
 - Analysis of very low concentrations needed to evaluate field samples near cleanup levels
- Applicability to Other Matrices
 - Lampblack similar to soots
 - Binds hydrocarbons more tightly than most matrices

Acknowledgements

- Tim Roy
- Richard Luthy
- Hoi-Ying Holman
- Adrienne LaPierre
- Joe Kreitinger
- Anita Bohrnerud
- Steve DiZio

Ray Loehr

Roman Lanno

Dave Nakles

Steve Hawthorne

Ron Jensen

Robert Doss

In Vitro GI Tract Uptake of BaP Correlated to SFE Available Fraction.

